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ORIGINATION OF A SELF-OSCILLATING MODE (MAGNETIC
STRIATIONS) IN A NONEQUILIBRIUM MAGNETIZED PLASMA

V. M. Zubtsov, O. A. Sinkevich, UDC 533.951
and V. T, Chuklova

In this paper, quantitative computations of the nonlinear solution of the problem of ionization instabilify
development in a bounded domain [1], performed by the Lyapunov—Schmidt method [2], are presented. The
amplitude of the self-oscillations is computed, the domains of the hard and soft modes of the loss of stability
are isolated, a distribution of the electron density and electrical current over the channel section is constructed
for the soft mode of the loss of stability — nonlinear magnetic striations. The topology of the striations in the
post-critical domain is discussed., It is shown that the maximum of the steady-state wave amplitudes does not
correspond to that wave which first lost stability. The results obtained are used for a qualitative analysis of
experimental results with a nonequilibrium magnetized plasma in a magnetic field (the existence of oscilla-
tions at small wavelengths in a full ionization mode of the admixture).

§1. Let us examine the behavior of a nonequilibrium magnetized plasma in a domain bounded by two non-
conducting walls x =0 and x =b, which are infinite in the y direction. The magnetic field induction vector is
directed along the z axis. Let us assume the parameters of heavy particles (atoms and ions) to be independent
of the coordinates and time, while the ionization equilibrium build-up time is considerably less than the char-
acteristic time of the problem. We consider the Reynolds magnetic number small and we neglect the effects
of radiation, Taking account of these assumptions, the system of equations describing the state of the medium
reduces to a dimensionless system of n partial differential equations in the potential ®n and the electron con-
centration ®, [1]. The system is solved by the method of a series expansion in the small supercriticality
parameter & =(2-27) /Q~1, In a zero approximation (n=0) the system has the form

L@y + L356, = 0, L@y + L3:0, =0 (t.1)
with the boundary conditions (see [3})
@,(0, V) = @1, Y) = 0, 8,00, Y) = B(1. Y¥) =0, (1.2)
where LYy = o — K} LYy = — ayl — ik, O

Ly =205 L= — ALY +fi ¥ =y + Wot;

A is a small parameter; Q" is the critical Hall parameter; k is the wave vector; and a; and f; are constant
factors (1, 41.

The solution of (1.1) with the boundary conditions (1.2) can be represented in the form
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Dyfz, T) =« [(F(x) eith — ¢*(2) e-—ikyYJ’. 1.3

Byz. YVy=o0a [e () oY - 0% () e—ikyYJ

E

where @ is the unknown amplitude of the self-oscillations whose magnitude is found from subsequent approxi-
mations, and the superscript asterisk denotes the complex-conjugate quantity,

Maps of the level lines of the functions #,(x, Y) and ®,(x, Y) are presented in Figs, 1 and 2, It must be
noted that the level lines of the function ®,(x, Y) are streamlines of the disturbed state which is superposed on
the fundamental background (homogeneous and stationary solution); hence, the current direction is indicated
by an arrow in Fig, 1,

A simple formula to compute the neutral curve Q(ky): Im(W() =0 and Re(Wy) =U, which corresponds to
striation motion at a velocity calculated in {5], where the agreement between this velocity and that obtained in
experiments is mentioned, is found successfully from the zero approximation.

Substituting the real (or imaginary) part of (1.3) into (1.1), we obtain a homogeneous system of equations
in the amplitudes, whose condition for nontrivial compatibility
ARE - (20K 2y - 20y ) BE + 207 Bk, — A3 (ARE = £,) =0 (1.4)

has four roots kyj, since the general solution of (1.1) contains four arbitrary constants. Substituting this
solution into the boundary conditions, we obtain a homogeneous system of equations to determine the arbitrary
constants, whose nontrivial compatibility condition has the form

{ 1 1 1
oiat RIS R el
%y Hg g “y (1.5)
npehxl TR e 53 ngeF
Here
2ik
#j(kyj) = — 5 (1.8)

Ak TR~ h

and (1.5) is for determination of the critical Hall parameter 2,

Let us investigate the nature of the roots of (1.4) by using the Sturm theorem [6] and considering all the
coefficients of (1.4) positive. Calculations of the quantities gy and f; for inert gases with an easily ionized
admixture show that for a sufficiently high separation of the temperatures this assumption is always valid,
The Sturm system for the polynomial 7(ky) in the left side of (1.4) has the form

2

Ty = go]‘ﬁ + &kt gk — gy, 1.7

Ty == 48’07“.2\' — 2.k~ g3

1 2 3
Ty = — ?g'zkx‘“ Z gk —&y
. : (ks 3 \hy
Tg=—Iyk, —hy, 1, = (é’z’;{l -7z a)E T £1

where gy=A; g =2/kg, +f; + 2a5; 83=297 kys gy=k§ (AKY <fy); by =2g,— 8g,84/8, + 9808%/e}; and hy=g; +12g,g:2,/23.

It can be shown that hy > 0. An analysis of the coefficients of the higher terms in the Sturm system (1.7)
results in the deduction that the presence of real roots of (1.4) is governed by the sign of 7,, The equation

Ba\hﬂ g =0 (1.8)

hy
Ty = gajfl T8y, 84=

defines a certain curve 2, (ky). For 27<Q,", Eq. (1.4) has no real roots, while for 27 >Qq it has two real and
two complex roots,

Let us examine the caseQ~>Q,. Usingthe Viette formulas, the roots of (1,4) can be represented in the

297



form: . . \
— by =—c—ir kp=—c5ir, kyy=cT4q, key=c¢—1, (1.9)

where ¢, r, and q are real and positive, The equalities
Yir == THary Ryp T Uy (L.10)

are satisfied for complex roots. The real and imaginary parts of the appropriate quantities are denoted by the
subscripts r and i in (1,10),

Equation (1.5) can be written in the form

s LM e ™ , ik B, i(k Byr) i(k. Eya
(nyy - xgns)[e( x3 Fhxs) + e( xithan) ei( xobhe) el( x1t .\a)] +

i(Rhyo~rhyy) , i(Ryt-R i(Byothy C (kg TRt
+(K1Z2+237~4)[e(‘"2 n)Te(xi w3) __ Glherthag) (iRt x*)}_:_

- (gt - a%,) [ ol (hxzFrag) - o Butthay) s thay) i) ] =0, (1.11)

Using (1.9) and (1.10), it can be shown that the left side of (1.11) is purely imaginary and (1.11) has the
form ’
2ty (ay — #gy) €08(26) — [3r + 1Ty + sg204; — 34055 - #4)] X (1.12)

X (er —e~T)sing — %, (‘/4; — #3;) + (€™ =~ e~T) cosg = 0.

For any value of ky, Eq. (1.12) has an infinite number of solutions: QO'(ky) <91‘(ky) <92"(ky) <,,,(Qo-(ky)
is a solution of (1.12) because two real roots of (1.4) hence agree; therefore, ¢ =0 and ®,j="4i, This means
that for any ky there exists an infinite set of solutions with different growth increments, where the increment
equals zero for Q,=Qy; for the m-th solution and is greater than zero for 2,>Q -,

Let us consider the case 2~ <Q,~, The roots of (1.4) can hence be represented in the form
pp = —C — i, kg = —C = ir, kg = € + i, kyy = ¢ — ift, (1.13)
where ¢, r, and pu are real and positive. Analogously to (1.10), the following equalities are satisfied:
Hop = —Rgpy Hgn = —Ngp, Koy = Hypy A4 = Hape 1.14)
Using (1.12) and (1.14), it can be shown that the left side of (1,11} is real:
— Bty gy €08(20) - (Fe -+ 2Ty + 2y — gy 1) (€7 — €77 (08 —e™H) - 2y, (07 L) (ot - o) =0, (1.15)
Computations show that (1.15) has no solution in the range 27<Q,7,

An investigation of the solution whose growth increment vanishes for 2~ =Q,~ results in the deduction
that it should be discarded, since two roots of (1.14) hence agree,

Therefore, the neutral curve separating the stability from the instability domain is Q4 (ky).

Results of computing the neutral curves of the first mode ©,7, the second £,7, the third @47, and the de-
pendence £, (k) are presented in Fig. 3. Also presented there for comparison is the netural curve of the
first mode (m=1) computed by means of the approximate formula [1]

(05)" — K3 (2AKj+1 +200) (AR + 1) = (am)? (2445 + F1 =+ 20,)%, (1.16)

‘ X
H

Fig, 1
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which can be obtained from (1.12) by using the fact about the presence of a small parameter A, Computations
are carried out for an Ar +2.3-10~% Cs plasma (the pressure p=1kg/cm?, T, =1500°K, Te =3200°K, and A=
0.5-1071), The coefficients a; and f; were computed by using the experimental dependences presented in {7].
Comparing the peutral curves computed by using (1.12) and (1.16) shows that the discrepancy can be signifi-
cant.

§2, To solve the nonlinear problem it is necessary to find the next approximations n=1, Values of &
and @, are sought from the approximation n=1 by the method elucidated in [1]. Qualitative sketches of the
level lines of the functions &= £, + £%§ and @=1+ £, + £204 (¢ is the supercriticality parameter; £?= Q- +9),
obtained on the basis of computations of &, ®,, &, @, are presented in Figs. 4 and 5. The computed domain
of elevated electron concentration (Fig. 5) has the same shape as the luminescing discharge domain in the ex-
periments [8, 9] corresponding to the assumptions made in this paper. Attention should be turned to the pres-
ence of closed disturbed streamlines with a characteristic dimension equal to half the channel width b (Fig, 4),

The amplitude of the self-oscillations a® can be computed in the next step (n=2), An approximate formula
is presented for a? in [1], An exact formula for %, which has a quite awkward form, is obtained on the basis
of the method described in [1]. Comparing the results of computing a? by the exact and approximate formulas
showed that the approximate formula truly describes the behavior of the self-oscillation amplitude qualitatively
for k =1,5, However, to construct the self-oscillating mode it turns out to be necessary to study the behavior
of @? due to k for large wavelengths (small k). As computations showed, in the range of k values from zero to
~1,5 @2 > 0, the amplitude changes sign with the increase in k., It is important to determine the maximum
positive value, since the decrement of the nonlinear oscillation vanishes at this value. Computations of the
self-oscillation amplitude permits extraction of domains of soft and hard modes of loss of stability, An investi-
gation of the nature of the loss of stability is important for clarification of the subsequent plasma behavior,

According to the exact formula for a? (which is awkward and is consequently not presented here), compu-
tations for the self-oscillating mode were performed for an argon plasma with an easily ionized component—
cesium — gs admixture, Computations were carried out in the 2000-6000°K electron temperature range for
fractional values of the admixture between 10~% and 1075, The results of computations are shown in Fig. 6.

For a?>0a soft. mode of loss of stability holds, and for @® <0 a hard mode holds, The point k* corre-
sponds to a? =0, i.e., the passage from the soft to the hard mode of the loss of stability.

Curves 1 and 3 in Fig, 6 are computed for T=3000°K and A =10"3, but for different fractions of the Cs
admixture: 1) 6=10"5%; 3) 6=10"%, It is seen from a comparison of the dependences a?(k) for different fractions
of the admixture that a diminution in & shifts the point k™ into the domain of shorter wavelengths (large k), the
maximum amplitude hence increasing substantially,

Curves 4 and 1 in Fig, 6 have been computed for & =10"% and A =10"3, but for different temperatures:
4) 2000°K; 1) 3000°K. Comparing curves 4 and 1 shows that a rise in temperature influences the behavior of
the dependence a?(k) substantially: the maximum amplitude grows and the transition point (k*, @*) shifts into
the domain of large k.

Let us compare curves 2 and 3 computed for T=3000°K and &= 10~2, but for different A:2) A =1072, 3)
A=10"%. It is seen from the computations that a change in the thermal conductivity {a small parameter) in the
band mentioned will influence the perturbation amplitude slightly.

A diminution in the fraction of the admixture or a rise in the temperature (or both factors simultaneously)
leads to an increase in ©- as well as a growth in the maximum of a? and shiftsthe point k* of the passage from
the soft to the hard modes of the 1oss of stability into the domain of large values of the number k (small wave-
lengths).

Self-oscillations corresponding to the magnetic striations observed in experiments [9] occur in the soft
mode of the loss of stability. The question of selecting the amplitude of the steady wave is an independent proh-
lem, since a®> 0 for the whole wavelength range in the soft mode of the loss of stability. In some cases the
amplitude of the steady wave visibly depends on the kind of initial perturbation, The amplitude 6f the steady
wave is selected corresponding to & p,,4, Since the decrement of the nonlinear oscillations vanishes at this
value. It should be noted that the wavelength corresponding to the steady amplitude does not. correspond to that
wave which first loses stability.

This is apparently explained by the fact that waves with minimal linear and nonlinear decrements can be
distinct in the subcritical domain, Only waves with a linear decrement are taken into account in a linear analy-
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sis of the stability, In the post-critical domain (the decrement goes over into an increment) a wave correspond-
ing to a nonlinear increment, and not the wave which first lost stability according to the linear increment, plays
the main part. ‘

§3. The methods elucidated above for computing the neutral curves and amplitudes of the self-oscilla-
tions can be used for a qualitative explanation of experiments [9-11], An Ar +Cs plasma placed between coaxial
electrodes was studied in these experiments, The dimensions of the cathode and anode, and the height of the
electrodes, were 13,38 and 40 mm, respectively, The fraction of the admixture varied between 0.5 - 10~ and
0.5-107* and the electron temperature varied between 2000 and 4000°K. For the geometry of the experiment,
the small parameter A took on values from 1073 to 1072, while the wave number k varied between 1 and 10,

The computations were performed for the temperatures 2000 and 4000°K and the following values of the
admixture fraction for each temperature: 10~%, 10~%, and 10-5,

Results of the neutral curve computations are presented in Fig, 7; 1) T=2000°K, 6=10"% 2-4) T =4000°K
and 6=1073, 107%, 1075, respectively. As is seen from Fig. 7, for the conditions of the experiments [9-11], the
plasma went from the instability into the stability domain with the diminution in the fraction of admixture and
with the rise in temperature; the instability domain occurs at higher values of =, and the critical value of the
Hall parameter shifts into the short-wavelength domain.

Let us compare the neutral curves 1 and 3 in Fig. 7. Both neutral curves were computed for 6 =1074,
but for different temperatures: 1) T=2000°K; 3) T=4000°K. Points of minimum 2~ (k™) are denoted by a circle,
and the point k*(@?=0) by a cross. Comparison shows that the minimum value of the Hall parameter on the
neutral curve from the soft mode domain goes over into the domain of the hard mode of the loss of stability
with the increase in temperature (k* is greater than k™ for T=2000°K, while k" is below k™~ for T =4000°K; &> 0
from k* to k=0 while %<0 from k* and above), The computations confirmed that a temperature rise resulting
in an increase in the degree of admixture ionization results in broadening the stability domain, especially for
high wavelengths,

It was detected in the experiments [10, 11] that saturation of the effective Hall parameter was neverthe-
less observed in the full ionization mode for the admixture. The assumption that this effect can be explained
by the presence of a hypothetical microscale inhomogeneity, not recovered by the instruments, was expressed,

However, another explanation of the effect noted can be given, As the warming current increases (the
fraction of the admixture and the magnetic field are fixed), it is possible to go successively from the unstable
domain with ©; >0~ into the stable domain where Q; <9~ (94 is some fixed value of the Hall parameter).

Let @y >0 ; fluctuations are observed in the plasma. As the temperature (current) rises, @~ shifts to the
right and upward from the origin, as is seen in Fig, 7 (toward high values of both the magnitude of the critical
value of the Hall parameter and the magnitude of the wave number corresponding to 9-),
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1f the parameter €~ was in the domain of the soft mode of the loss of stability prior to the heating, then
as the temperature rises £~ can turn out to be in the domain of the hard mode of the loss of stability (in this
case a self-oscillating mode exists for 2<¢~), In this latter case, since the full ionization state of the admix-
ture is achieved by a transition from the unstable domain, the fluctuations do not vanish at once. Although the
temperature corresponds to full ionization of the admixture and the corresponding Hall parameter Q, is less
than the critical value ©-, in this state, oscillations which result in saturation of the effective Hall parameter
can exist, It is not excluded that the characteristic wavelengths of the self-oscillating mode which can occur
in the subcritical domain in this case were not fixed in the experiments [10, 11]. If the appropriate physical
diagram is true, the results of the experiment will depend on how the full ionization mode of the admixture is
achieved (hysteresis occurs). If the full-ionization mode of the admixture is achieved from the stable state in
which there are no fluctuations, the effective plasma parameters (conductivity and Hall parameter) should
agree with the laminar values. If the full-ionization mode of the admixture is achieved from the state in which
oscillations exist, the effective parameters can visibly differ from the laminar values.

For a more detailed comparison between computations and the experiments [10, 11], it is certainly
necessary to perform additional computations with more exact values of the transfer coefficients,

The results presented here have been obtained for small values of the supercriticality parameter, but,
as has been shown in {12] even for higher values of the supercriticality parameter, ionization waves of finite
amplitude — magneti¢ striations — can exist. Only when the second critical value exceeds the Hall parameter
does an ionization turbulence mode occur. The model proposed by Landau for the origin of turbulence holds
for the soft mode of the loss of stability. As more detailed investigations show, magnetic striations can exist
even for moderate values of the supercriticality parameter, As the supercriticality parameter increases
further, a modulation instability of the magnetic striations starts to develop. The mutual interaction between
the waves should be taken into aceount in the hard mode of the loss of stability.
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